Những câu hỏi liên quan
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Neet
13 tháng 5 2017 lúc 20:34

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

Bình luận (0)
Uchiha Itachi
Xem chi tiết
Bùi Tuấn Đạt
14 tháng 5 2021 lúc 15:55

Ta có x2-xy+y2=\(\left(\dfrac{x+y}{2}\right)^2+3\left(\dfrac{x-y}{2}\right)^2\)\(\ge\)\(\left(\dfrac{x+y}{2}\right)^2\)

=>\(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}\ge\dfrac{x+y}{2\left(x+y+2z\right)}\)(1) . Tương tự ...

Đặt \(\left\{{}\begin{matrix}y+z=a\\x+z=b\\x+y=c\end{matrix}\right.\)(a,b,c>0). Khi đó ta có :

S=\(\dfrac{1}{2}\left(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\right)\ge\dfrac{3}{4}\)  (Netbit)

Bình luận (0)
Tùng
Xem chi tiết
nguyentrongquan123
19 tháng 3 2018 lúc 19:57

?

Bình luận (0)
Linh Mai
Xem chi tiết
Lightning Farron
28 tháng 5 2018 lúc 23:06

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c>0\end{matrix}\right.\)

\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}+\dfrac{bc}{\sqrt{b^2+c^2+2a^2}}+\dfrac{ca}{\sqrt{c^2+a^2+2b^2}}\le\dfrac{1}{2}\)

Ta có:\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}=\dfrac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)

\(\le\dfrac{2ab}{a+b+2c}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{bc+ac}{a+b}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)

Dấu "=" khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=\dfrac{1}{9}\)

Bình luận (0)
Nguyễn Huy Hoàng
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 11:26

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

Bình luận (0)
Khôi Bùi
19 tháng 5 2021 lúc 11:30

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

Bình luận (0)
dinh huong
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:23

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

Bình luận (0)
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 14:36

\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)

Mặt khác:

\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)

\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)

Bình luận (2)